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Symbiodiniaceae probiotics for use
in bleaching recovery
Carys A. Morgans1, Julia Y. Hung1, David G. Bourne1,2, Kate M. Quigley1,2,3

Coral reefs are currently under threat as a consequence of local and global stressors, in particular, mass coral bleaching induced
by climate warming. In conjunction with global cuts to carbon emissions, active restoration interventions are being investigated
as an additional option to buy time while these stressors are mitigated. One intervention with the potential to improve recovery
during or postbleaching involves the addition of probiotic treatments, that is the addition of microorganisms that provide
benefits to the host. Fragments of the branching coral, Acropora millepora, were experimentally exposed to a bleaching event
coupled with the inoculation of Symbiodiniaceae probiotics (Durusdinium trenchii and Cladocopium goreaui) to determine
if these probiotic treatments could ameliorate bleaching related stress and mortality. Fragments inoculated with C. goreaui
and exposed to 32∘C for 6 days exhibited significantly less mortality (9.1± 5%) compared to corals exposed to 32∘C without
probiotics (66.7± 8%) or with D. trenchii (41.7± 9%). Fragments in the C. goreaui probiotic treatment also bleached less
and exhibited the highest photosynthetic efficiency compared to fragments inoculated with the D. trenchii at 32∘C. Internal
transcribed spacer-2 amplicon sequencing did not detect the inoculated D. trenchii and C. goreaui cells within A. millepora
tissues at the end of the experiment, suggesting the corals did not reestablish symbiosis but instead used inoculated cells as a
nutritional supplement, although other factors such as shuffling conditions may have had an effect. This study highlights that
nutritional supplementation can possibly aid coral resilience to temperature stress, though a far more detailed understanding
of the factors that influence host regulation during symbiosis establishment is required.
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Implications for Practice

• The addition of Symbiodiniaceae probiotics supports
improved coral survival during heat stress, thereby
improving projected outcomes for protection and restora-
tion.

• The use of probiotics to induce manipulative shifts to
more heat-tolerant Symbiodiniaceae communities appears
limited.

• The use of Symbiodiniaceae probiotics for bleaching and
bleaching-related mortality prevention and amelioration
is a potential new restoration technique but will require
substantial research effort to operationalize.

Introduction

The impacts of climate change on coral reefs are increasing
in frequency and severity, driving corals closer to their ther-
mal physiological thresholds and leading to mass die-offs on a
global scale (Hughes et al. 2003; Hoegh-Guldberg et al. 2007;
Riegl et al. 2009; Hughes et al. 2017). This increase in water
temperature disrupts the relationship between the coral host
and their symbiotic dinoflagellates of the Family Symbiodini-
aceae, resulting in mass mortality if temperatures are sustained
(Hoegh-Guldberg 1999; Baker 2003). The development of novel
restoration interventions is becoming increasingly important
to help promote recovery and resilience of corals (van Oppen

et al. 2015; Peixoto et al. 2017; National Academies of Sci-
ences, Engineering, and Medicine & Ocean Studies Board 2019;
Gouezo et al. 2019). The potential use of coral probiotics is
one option (National Academies of Sciences, Engineering, and
Medicine & Ocean Studies Board 2019), which involves manip-
ulating corals’ association with its resident microorganisms to
provide benefits to the host, prevent stress, or facilitate recov-
ery (Peixoto et al. 2017). This method assumes that micro-
biome changes will assist in the acclimation or adaptation of the
holobiont to new environmental conditions through the active
manipulation of those populations (Coral Probiotic Hypothe-
sis; Reshef et al. 2006). However, there is limited understanding
as to whether Symbiodiniaceae communities in adult corals are
amenable to change using probiotics, or if their addition sup-
ports coral resilience through increased host fitness.
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A diversity of Symbiodiniaceae taxa may co-occur within
the coral host simultaneously, ranging from dominant (high) to
background (low) abundances (Fabina et al. 2012; Ladner et al.
2012; Putnam et al. 2012; Silverstein et al. 2012; Boulotte et al.
2016). There is evidence that adults of some coral species can
alter their symbiont communities to quickly acclimate to chang-
ing environmental conditions (Buddemeier & Fautin 1993;
Boulotte et al. 2016; Torda et al. 2017). This process involves
either uptake of novel exogenous Symbiodiniaceae from the
environmental pool (“switching”), or a change in relative abun-
dances of Symbiodiniaceae already present within the coral
(“shuffling”) (Baker 2003) which appears to be a more common
process (Jones et al. 2008; Cunning & Baker 2013; Bay et al.
2016), whereas the evidence for switching during heat stress is
limited (Boulotte et al. 2016), and may not be maintained long
term (Coffroth et al. 2010). The ability to shuffle or switch may
be limited by host genetic constraints and/or the environmen-
tal scarcity of certain symbiont taxa (Poland & Coffroth 2017;
Quigley et al. 2017a, 2017b).

Algae in the family Symbiodiniaceae are taxonomically
and physiologically diverse, with thermal tolerances ranging
between 20∘C and 33∘C (Silverstein et al. 2015; Grégoire et al.
2017; Swain et al. 2017). Durusdinium (formerly clade D) is
generally classified as thermally tolerant, whereas Cladocopium
(formerly clade C) is considered more sensitive (Baker 2003;
Berkelmans & van Oppen 2006; Quigley et al. 2018b; but see
Hume et al. 2015 for Chaetomium thermophilum). Shuffling to
Durusdinium dominance for example may provide increased
heat tolerance and allow corals to rapidly increase their accli-
mation and/or adaptive potential (Fay & Weber 2012). How-
ever, some coral species may not be capable of naturally accli-
matizing or adapting fast enough to keep pace with the rate
of climate warming (Csaszar et al. 2010). Hence, new inter-
ventions are promoted to assist corals’ natural recovery poten-
tial by manipulating the symbiont community to one more
amenable to increasing ocean temperatures (bacterial or Sym-
biodiniaceae) (van Oppen et al. 2015; Torda et al. 2017). It is
currently unknown if corals can acquire exogenous symbionts,
sustain these changes, or if these changes mitigate bleaching
stress and mortality. To address this question, we experimentally
exposed the common branching coral Acropora millepora to
a simulated bleaching event equivalent to 2.43∘-heating-weeks
(DHW), while supplementing coral fragments with cultured
Durusdinium trenchii or Cladocopium goreaui cells.

Methods

As host-symbiont specificity is a genetically determined trait
(Quigley et al. 2017b), a single Acropora millepora colony was
used to control for genotypic effects in Symbiodiniaceae acqui-
sition and regulation. The colony was collected from Davies
Reef (−18∘49′30′′S, 147∘38′42′′E) on the central Great Bar-
rier Reef (GBR) in 2016 (Permit Number: G12:35236.1) and
kept at Central GBR conditions (27.5∘C) in the National Sea
Simulator (SeaSim) at the Australian Institute of Marine Sci-
ence (AIMS). After 16 months of acclimation in the SeaSim,

the colony was fragmented into individual approximately 8 cm
fragments (hereafter referred to as “nubbins”) and allowed to
recover for 4 weeks before the beginning of the experiment,
which ran for a total of 20 days (day 1 beginning when the tem-
perature reached 32∘C). Temperature ramping increased from
27.5∘C to 32∘C over 9 days (0.5∘C/day) for all tanks excluding
the ambient tanks at 27.5∘C. The temperature was sustained at
32∘C for a further 5 days before being brought back down to
27.5∘C (1∘C/day). A recovery period began when the tempera-
ture had been brought back down to 27.5∘C and was maintained
for 11 days to monitor recovery and post-thermal stress. Water
inflow to tanks was 0.8 L/second and circulated via an inter-
nal pump. The light for the aquariums were on a 24 hour 12:12
light/dark cycle, 2-hour sunrise/sunset ramp time, photosynthet-
ically active radiation (PAR) = 100. There were three replicate
tanks for each of the four treatments (nine replicate tanks, 12
tanks in total) with three nubbins in each tank.

Durusdinium trenchii (SCF082) and Cladocopium goreaui
(SCF055-01.10) were cultured and grown in single-host inocu-
lums in stock culture at 27∘C at the Algal Culturing Facility at
AIMS (see Supplement S1). These taxa were chosen as they
represent a known thermally tolerant taxa (D. trenchii) and a
less thermally tolerant taxa (C. goreaui). D. trenchii and C.
goreaui are commonly found in A. millepora in central, off-
shore GBR environments (Ulstrup & van Oppen 2003; Abrego
et al. 2009). A. millepora nubbins were subjected to heat stress
to induce an ecologically relevant bleaching response, equiva-
lent to 2.43 DHW (United States National Oceanic and Atmo-
spheric Administration). The experimental treatments were as
follows: (1) elevated temperature+ 4.5∘C = 32∘C and addition
of D. trenchii (abbreviated as temperature and probiotic treat-
ment: 32/+D1), (2) elevated temperature and addition of C.
goreaui (32/+C1), (3), elevated temperature but no added Sym-
biodiniaceae (32/−), and (4) no temperature elevation but with
the addition of D. trenchii (27.5/+D1).

Coral nubbins were inoculated with Symbiodiniaceae
(1.22× 108 cells/mL) once every 3 days after ramping to 32∘C
was complete, for a total of four inoculations following estab-
lished methods (Coffroth et al. 2010). During Symbiodiniaceae
inoculation, each tank was drained to 17 L (1 cm above coral
nubbins), water was turned off, and 160 mL of Symbiodini-
aceae culture were dosed to each respective treatment tank.
Each inoculation consisted of Symbiodiniaceae suspended
in filtered seawater (0.5 μm) with nutrient-rich IMK media
(Supplement S1 & S5). The negative control tanks (32/−) were
also dosed with the same 160 mL of filtered seawater and IMK
concentration but excluded Symbiodiniaceae. The water was
left at 17 L for 2 hours to allow for the potential uptake of the
Symbiodiniaceae. This duration was chosen to minimize the
stress to corals due to low water turnover but allow for potential
uptake. During this time, the tanks were thoroughly stirred to
ensure the Symbiodiniaceae cells were mixed. Tanks were then
visually inspected to make sure cells were not fixed to the sides
or bottom of the tanks. The cells remained in the tanks when the
pumps and water flow were turned back on. Cell densities were
calculated using a Neubauer hemocytometer (Supplement S1).
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Figure 1. Acropora millepora physical responses to experimental bleaching and Symbiodiniaceae probiotic treatment. Bleaching index score and effective
quantum yield (YII) are represented in gray and blue, respectively. Gray bars represent percent mortality (±SE) of nubbins measured on the final day. Dashed
lines represent Symbiodiniaceae inoculations. Prior to heat stress, during heat stress, and the recovery period are represented in blue, red, and green shading,
respectively. Bar plots represent the relative abundances of ITS2 amplicon sequencing of coral nubbins and cultured Symbiodiniaceae cells.

Photographs were taken of each nubbin (at the same time
every second day; between 11:00–12:00 hours) to assess
bleaching and health status using the Coral-Watch Health Mon-
itoring Chart (Siebeck et al. 2006). A bleaching index score
(BIS) (0 = bleached and 6 = healthy) was calculated based
on images analyzed in ImageJ (Schneider et al. 2012) and
color calibration curves (see Quigley et al. 2019 for details).
Pulse amplitude modulated fluorometry was used to determine
the effective quantum yield (Y(II) of photosystem II within
Symbiodiniaceae cells; Warner et al. 2010; Schrameyer et al.
2016) (see Supplement S2 for more information). Mortality
was quantified daily. All statistics were completed in R (ver-
sion 3.4.1; R Core Team, 2017) (see Supplement S3 for full
statistical information).

At the end of the experiment, each coral nubbin was frozen
and kept at −80∘C. Samples were collected by scraping approx-
imately 30 mg of tissue from each nubbin. DNA was extracted
from nubbins and D. trenchii- and C. goreaui-cultured cells
using a sodium dodecyl sulfate method (Wilson et al. 2002). The
DNA was then kept at −40∘C. Library preparation and sequenc-
ing of the internal transcribed spacer (ITS-2) region was per-
formed as described in Quigley et al. (2019). Index polymerase
chain reaction amplified products were sequenced at the Rama-
ciotti Centre for Genomics (University of New South Wales,
Sydney, Australia) using Illumina MiSeq 300 bp paired-end
sequencing. Bioinformatic processing was performed using the
DADA2 and Phyloseq pipeline modified for Symbiodiniaceae
(McMurdie & Holmes 2013; Callahan et al. 2016; Quigley et al.
2019) (see Supplement S4).

Results

Acropora millepora nubbins in the 32∘C treatment with no
added Symbiodiniaceae (32/−) displayed the highest mortal-
ity (mean mortality ± SE at 20 days: 66.7± 8%), lowest effec-
tive quantum yield relative to initial values (mean Y(II)± SE at
20 days: 0.64± 0.03), and substantial bleaching (mean BIS ±
SE at 20 days: 3.8± 0.31) by the end of the experiment (Fig. 1).
These results demonstrate that 2.43 DHW are sufficient to pro-
duce substantial experimental heat stress in A. millepora nub-
bins. In contrast, nubbins in the 27.5∘C treatment provisioned
with Durusdinium trenchii (27.5/+D1) exhibited no mortal-
ity (0%), high and stable Y(II) values (0.72± 0.01), and little
bleaching (BIS: 5.7± 0.05). The lack of bleaching signs and
mortality in the 27.5/+D1 treatment suggests that exposure to
D. trenchii without any heat exposure does not adversely affect
A. millepora physiology.

Coral nubbins in the 32∘C treatment provisioned with
Cladocopium goreaui (32/+C1) exhibited the lowest mortality
(9.1± 5%) and bleaching (BIS: 4.12± 0.15) compared to any
of the other heat treatments by the end of the experiment (gen-
eralized linear mixed model [GLMM], 32/+D1: p< 0.0001;
32/−: p = 0.0023) (Fig. 1). It was also the only 32∘C treatment
which displayed signs of recovery of Y(II) from day one
(0.69± 0.03) to day 20 (0.71± 0.02). A. millepora nubbins in
the 32∘C treatment with added D. trenchii (32/+D1) exhib-
ited substantial mortality (41.7± 9%), had significantly lower
Y(II) (0.43± 0.04) compared to any other treatment (GLMM,
27.5/+D1: p< 0.0001; 32/−: p = 0.0047; 32/+C1: p< 0.0001)
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and experienced the most severe bleaching (BIS: 3.37± 0.23)
by the end of the experiment (Fig. 1).

The Symbiodiniaceae communities sequenced from the coral
nubbins and cultured cells were distinct, suggesting that sym-
biosis establishment did not occur (Fig. 1 & S1). Although Cspc
and C3j variants were shared between the C. goreaui culture and
all the nubbins, these variants were already present within the
corals as indicated by the 32/− treatment (Fig. S1). The coral
nubbins were typified by 14 amplicon sequence variants (ASVs
or, hereafter, variants) from Cladocopium, particularly domi-
nated by C3k and Cspc. No Durusdinium variants were detected
in any coral tissue samples. Nine variants were found within the
C. goreaui culture and dominated by ASVs from C1m, C1ca,
C1c.C45, and C50. Five Durusdinium variants dominated the
D. trenchii culture.

Discussion

Enhanced bleaching tolerance has been associated with Clado-
copium goreaui relative to Durusdinium trenchii in coral juve-
niles of some Indo-Pacific acroporid species (Abrego et al.
2008). C. goreaui may be able to outcompete D. trenchii in hos-
pite through enhanced nitrogen acquisition (Baker et al. 2013)
or through increased carbon sharing compared to D. trenchii
(Cantin et al. 2009), which can confer an energetic advantage
to the host, leading to significantly lower mortality in this
treatment. Although we did not detect any novel C. goreaui
sequences within our treatments, the transient usage of these
cells may have provided Acropora millepora nubbins with some
benefit reflected in the decreased mortality and increased pho-
tosynthetic efficiency (Connolly et al. 2012). Once warming
subsides, thermally tolerant symbiont associations generally do
not persist (Thornhill et al. 2006; LaJeunesse et al. 2009; Baker
et al. 2013; Kemp et al. 2014) and may explain why novel C.
goreaui and D. trenchii sequences were not retrieved at the end
of the experiment.

Symbiodiniaceae dynamics and propensity for shuffling have
been shown to be dependent on the severity of thermal stress,
initial symbiont community composition, and recovery temper-
ature (Cunning et al. 2015). For example, Coffroth et al. (2010)
reported the successful uptake of novel Symbiodiniaceae after
experimental bleaching of Porites divaricata, although this sym-
biont community was not stable during recovery. The successful
uptake of novel symbionts in this species may be due to the
extreme level of bleaching experienced by P. divaricata nub-
bins (loss of 98–99% of symbiont cells) (Coffroth et al. 2010).
The A. millepora nubbins in this current study did not reach this
level of bleaching (BIS > D3 compared to BIS = D1) and there-
fore higher bleaching severity (> 2.43 DHW) may be needed to
induce uptake of novel Symbiodiniaceae in adult A. millepora.
The relatively low DHW (2.43) may also have been too mild a
stressor to induce a fitness advantage in switching or shuffling to
D1 (Cunning et al. 2015) given threshold temperatures for this
change are likely higher (4 DHW) (Bay et al. 2016). Therefore,
shuffling conditions (i.e. sustaining at 32∘C for longer period
or a warmer recovery period) may be necessary to induce a

fitness advantage and therefore lead to probiotic efficacy. Inoc-
ulations may also have occurred too late in the experiment to
assist in bleaching resilience given heat can trigger a shift in rel-
ative abundance prior to bleaching (Thornhill et al. 2006; LaJe-
unesse et al. 2009; Coffroth et al. 2010; Kennedy et al. 2015).
Hence, it may be more beneficial to apply probiotics prior to
the increase in temperature (Peixoto et al. 2017). Future studies
should assess amplicon sequencing of the relative abundances of
Symbiodiniaceae prior to heat stress, during stress, and during
recovery to gain further understanding of symbiont community
flexibility and potential benefits of these probiotics.

The provisioning of C. goreaui cells significantly reduced
bleaching-related mortality compared to controls, although
reduced mortality and improved photosynthetic efficiency may
have been derived from nutritional supplementation and not
symbiosis reestablishment. While associations with thermally
tolerant symbionts have been found to be beneficial to the
coral host (Fay & Weber 2012; Boulotte et al. 2016), the estab-
lishment of these Symbiodiniaceae taxa did not occur. Dur-
ing a bleaching event, corals can rely on heterotrophic feeding
and alternative energy sources to survive (Grottoli et al. 2006;
Bessell-Browne et al. 2014). For example, decreased bleaching
susceptibility and increased pigmentation during recovery was
found in experimentally heated and fed corals when compared
to non-fed corals (Ferrier-Pagès et al. 2010; Connolly et al.
2012). Heterotrophic feeding was likely absent in the 32∘C treat-
ment with no added Symbiodiniaceae cells as the seawater was
filtered to 0.5 μm (therefore excluding any free-living Symbio-
diniaceae and other microbial food sources) (LaJeunesse 2002),
potentially explaining the high levels of bleaching.

The ability of scleractinian corals to use dinoflagellates as
a food source has not been thoroughly investigated as most
studies have addressed corals’ ability to ingest zooplankton
algae (Sorokin 1973; Leal et al. 2014), although Symbiodinium
microadriaticum has been used for clam nutrition (Fitt et al.
1986). Digestion of Symbiodiniaceae from within the polyp
tissues has been reported, but it is unclear whether this may
support colony survival under stressful conditions (Titlyanov
& Titlyanova 2002). The 32∘C treatment provisioned with C.
goreaui exhibited significantly lower mortality compared to
corals provisioned with D. trenchii, suggesting that if feeding
of the Symbiodiniaceae cells was occurring, then there may be
a difference in nutritional benefit between these taxa. Different
Symbiodiniaceae taxa have been found to harbor varying lipid
bodies (Tchernov et al. 2004) and metabolite profiles (Klueter
et al. 2015), which may confer different nutritional benefits for
potential tissue growth and metabolism (Hawkins & Klumpp
1995). Preferential feeding on Symbiodiniaceae from the coral
host has not yet been investigated; hence, uncertainty remains
whether nutritional supplementation was responsible for the
differences in mortality across treatments.

Recent heritability estimates suggest substantial host genetic
regulation of the Symbiodiniaceae community during early
coral life-history stages, which may extend into adulthood
(Quigley et al. 2017b, 2018b; Poland & Coffroth 2019). High
heritability of bleaching, mortality, and Symbiodiniaceae com-
munity diversity (Kenkel et al. 2015) and the strong influence
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of host identity (i.e. genet) (Kenkel et al. 2013, 2015; Cunning
et al. 2015; Drury et al. 2017) also suggest substantial host lim-
itation to acquiring and maintaining novel Symbiodiniaceae
communities, even in horizontally transmitting coral species.
To control for these known genotypic effects in uptake, only
one colony (genet) was used. It will be important in subsequent
work to include multiple A. millepora genotypes to each treat-
ment so that any differences between treatments and variation
among genotypes may be tested to assess the generality of these
conclusions at the population and species level.

Finally, Symbiodiniaceae are also readily available in the
environmental pool, whereas in this study, corals were selec-
tively inoculated at certain times for short periods (2 hours).
Therefore, this may not have allowed sufficient time for uptake.
Direct effects due to the provisioning of distinct Symbio-
diniaceae cannot be excluded and may explain the observed
variability in survival with the addition of different symbiont
taxa. The provisioning of C. goreaui may have also had sec-
ondary effects on other members of the microbial consortia, i.e.
the increased abundance of bacterial partners associated with
C. goreaui (Bernasconi et al. 2019), that then indirectly influ-
ence host recovery (Ziegler et al. 2017). A future challenge will
be to uncover how Symbiodiniaceae probiotics may influence
and potentially benefit corals at the cellular level under both
ambient and stressful conditions.

The results presented demonstrate that the application of
Symbiodiniaceae probiotics significantly reduces bleaching
related mortality when corals are provided either D. trenchii or
C. goreaui. A. millepora inoculated with C. goreaui exhibited
lower mortality, less bleaching, and higher photosynthetic
efficiency in comparison to corals inoculated with D. trenchii.
Interestingly, the exogenous uptake of symbionts was not
observed, and future work is needed to assess the potential
nutritional benefit of Symbiodiniaceae probiotics as well as
the host regulation which controls symbiosis establishment.
As coral reefs continue to decline, the continued assessment
and development of restoration interventions will be critically
important in this period of rapid environmental change.
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